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Sum-free subsets

N. Alon* and D. J. Kleitman*

Abstract

A subset A in an Abelian group is called sum-free if (A+A)NA = &.
We prove that for every finite Abelian group G, every set B of n non-
zero elements of G contains a sum-free subset A of cardinality
|A| > 3n. The constant % is best possible.

1 Introduction

A subset A of an Abelian group is called sum-free if (A+A)NA = &,
i.e., if there are no (not necessarily distinct) a,b,c € A such that
a+b = c. There is a considerable amount of results concerning sum-
free subsets of Abelian groups. Many of these appear in the survey arti-
cle [14] and some of its references. Our research here was motivated by
a question we heard from Y. Caro, who asked if there is a positive con-
stant ¢, such that any set B of n positive integers contains a sum-free
subset A of cardinality

A > cn.

We have found a very simple proof of the following statement, which
answers this question. Not surprisingly we learned later that almost the
same result, without the strict inequality and with a rather similar proof,
had been proved by Erdds more than twenty years ago (see [7]).

Proposition 1.1 Any set B of n non-zero integers contains a sum-free sub-
set A of cardinality
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|A| > in.

We can show that the constant 4 cannot be replaced by 3% (or any

bigger constant), improving the result in [7], which asserts that the con-
stant 3 cannot be replaced by 3. Although this is a very modest
improvement, we believe it is worth mentioning, as it suggests that
may actually be the best possible constant.

For a subset B of an Abelian group, let s(B) denote the maximum
cardinality of a sum-free subset of B. Similarly, for a sequence
A = (ay,a,,...,a,) of (not necessarily distinct) elements of an Abelian
group, let s(A) denote the maximum number of elements in a sum-free
subsequence (a,-l,aiz,...,a,-t) of A, i.e., the maximum k such that there
are 1 <i; <ip; < ... <i < n, where the set {g; ,a;,...,4;} is a sum-
free set. In these notations, Proposition 1.1 is simply the statement that
for every set B of non-zero integers, s(B) > %|B|. Its proof applies to
sequences as well, and establishes the following result (which is clearly
stronger than Proposition 1.1).

Proposition 1.2 For any sequence B of non-zero integers, s(B) > %|B|.

On he other hand, we construct sequences B with s(B) < 3%|B|. More-
over, we show that, for every sequence A, there is a sequence B such
that

s(B) _ s(A) _ 1
Bl ~ Al (|A|-s(4)+1D)lelA|”

Therefore, the infimum of the ratio s(B)/|B|, as B ranges over all
sequences of integers, is not attained.

Babai and Sés [4] raised the problem of estimating the maximum size
of the sum-free subsets of n elements of general groups. Our main
result in this paper is the following theorem, which settles this problem
for finite Abelian groups.

Theorem 1.3 For any finite Abelian group G, every set B of non-zero
elements of G satisfies s(B) > %|B|. The constant % is best possible.
Similarly, every sequence A of non-zero elements of G satisfies s(A) >
2|A|, and the constant % is optimal.

Our paper is organized as follows. In Section 2 we present simple
proofs of Propositions 1.1 and 1.2 which slightly improve Erdés’ result.
We construct sets B and sequences A of non-zero integers with rela-
tively small values of s(B)/|B| and s(4) /|A].
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In Section 3 we consider general finite Abelian groups and prove
Theorem 1.3. Finally, Section 4 includes several extensions and conse-
quences of the above results and a few open problems.

2 Sum-free subsets of integers

We first prove Proposition 1.2 (which implies Proposition 1.1). Let
B = (by,by,...,b,) be a sequence of n non-zero integers. Let p =
3k+2 be a prime, which satisfies
p > 2 max |b;],

and put C = {k+1,k+2,...,2k+1}. Observe that C is a sum-free sub-
set of the cyclic group Z, and that

€] . k&l

p—1 3k+1
Let us choose at random an integer x (1 < x < p) according to a uni-
form distribution on {1,2,...,p—1}, and define d,,...,d, by d; = xb;
(modp) (0 < d; <p). Trivially, for every fixed i (1<i=<n) as x
ranges over all the numbers 1,2,...,p—1, d; ranges over all non-zero
elements of Z, and hence

Pr(d; € C) = .58 > 1.

p—1
Therefore the expected number of elements b; such that d; € C is more
than n. Consequently, there is an x (1 < x < p) and a subsequence A
of B of cardinality |A| > 3|B]|, such that xa (modp) € C for all a € A.
This A is clearly sum-free, since if a,+a, = a; for some a,,4,,a; € A
then xa, +xa, = xa; (modp), contradicting the fact that C is a sum-free
subset of Z,. This completes the proof. [J

Next we show that the constant % in Proposition 1.1 cannot be
replaced by 4. Put B = {1,2,3,4,5,6,10}. If A C B is sum-free, then
|[An{1,2}| =1, |[AN{3,6}| =1 and [AN{5,10}| = 1, Consequently, if
A has more than 3 elements, then A has precisely one element from
each of the 3 pairs {1,2}, {3,6} and {5,10}. However, in this case, since
4€ A,2¢ A and hence 1 E A. As A is sum-free, 3& A and SE A
and hence 6 € A and 10 € A. This is a contradiction, since 4+6 = 10.
Therefore, for the above set B, s(B) =<3 = 3|B|. In fact, s(B) =3
since, e.g., {1,3,10} is sum-free. A similar simple case analysis shows
that, if A C B, |A| =3 and AU{8} is sum-free, then {1,10} C A.
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Indeed, 4 &€ A and hence A contains precisely one element from each of
the pairs {1,2}, {3,6} and {5,10}. If 2 € A then 6 ¢ A and 10 & A and
hence {2,3,5} = A, contradicting the fact that it is sum-free. Thus
2¢A and 1€A. If 5€A then 3€ A (as 5+3=28) and 6 € A,
which is impossible. Hence 10 € A and {1,10} C A, as claimed. We
next apply these properties of the set B to construct a set C with
s(C) = $|C| (< 3|C|). Put C= BU7TBUSBU9BU{64}. Clearly
|C| = 29 and s(C) < 4s(B)+1 = 13. We claim that in fact s(C) < 12.
Indeed, suppose this is false, and let A C C be a sum-free subset of C
of cardinality 13. Then clearly

|ANB| = |AN7TB| = |AN8B| = |AN9B| =3

and 64 € A. For each i € {1,7,8,9} define A; = ANiB and A} =
{a/i: a € A;}. Clearly each A is a sum-free subset of B of cardinality
3. Since 64 = 8:8, A;U{8} is sum-free and hence {1,10} € Az. There-
fore 8,80 € A. Hence A,U{8} is sum-free and thus 1,10 € A. It fol-
lows that 6-9 = 64—10, 1-9 =841, 2:9 = 10+8 and 10-9 = 80+10
are not in A. Thus Ay = {3,4,5} and hence 27,36,45 € A. Conse-
quently 7-1=8-1¢ A, 7-5=45-10¢€ A, 7-4=27+1 ¢ A and
7-10 = 80—10 & A. Thus A5 = {2,3,6} and 21,42 € A, contradicting
the fact that A is sum-free. Therefore s(C) < 43|C]| as claimed and the
constant § cannot be replaced by 335. Notice that the same estimate
holds for each of the sets

C,, = CU1000CU1000*°CU ... U1000™"1C.

Hence, for every positive integer m there is a set of n = 29m positive
integers such that s(C,,) < 33|C,,|.

In the case of sequences, we can obtain better upper bounds than the
above one. Here we need the following well-known theorem of Schur
[13]

Theorem 2.1 (Schur [13], see also, e.g., [14] or [10]) For every k =2
there exists a finite smallest possible integer f(k) < k!e, such that there is
no partition of the integers {1,2,..., f(k)} into k sum-free sets. In partic-
ular, f(2) = 5 and f(3) = 14.

The next lemma provides a way of constructing sequences B with a rela-
tively small value of s(B)/|B]|.

Lemma 2.2 Let A = (ay,a,,...,a,) be a sequence of n non-zero integers
and put s = s(A). Suppose there exists a set C = {cy,...,c;} of k
integers such that every sum-free sequence of A of cardinality s contains
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at least one term that is equal to a member of C. Let f = f(k)
be the number given in Theorem 2.1, and let B be the sequence
(bj=ja:1<isn,1<j<f). Thens(B) < fs—1. Hence

SB) _ () _ 1

8] = TAl " A
Proof The sequence B is a union of the f sequences B; =
(jay, jay,...,ja,) for 1 < j=< f. Since each such sequence is simply a
product of the members of A by the constant j, we have that
s(B;j) = s(A) = s. Consequently,

f
s(B) = 3 s(B;) = sf.
=1

To complete the proof we must show that the last inequality is strict.
Assume it is not and let D be a sum-free subsequence of B of cardinal-
ity sf. Clearly D must contain precisely s elements from each B;. We
now define a partition of {1,2,...,f} into |[C| = k subsets as follows.
For each j (1 = j = f) D contains a sum-free sequence of s elements of
Bj. Let (dy,...,d;) be this subsequence. Clearly (d,/j,d,/},...,d;/j) is
a sum-free subsequence of A of cardinality s. By the definition of
C = {c;,...,cx}, there are i and | (1si<s, 1 <I[=<k) such that
d;/j = ¢;. Choose, arbitrarily, such i and / and assign j to the /th class
of the partition. Since f = f(k) was chosen according to Theorem 2.1,
there is an / (1 = /=< k) and there are (not necessarily distinct) j;, j»
and j; such that j, +j, = j3 and j;, j» and j; all belong to the Ith class
in the partition defined above. Consequently, there are d,,d,,dy € D
such that d; = ¢;j; for 1 =i < 3. However, in this case,

di+dy = c¢jr+)2) = ¢jz = ds,

contradicting the fact that D is sum-free. Hence, our assumption that
s(B) = sf is false and s(B) < sf—1. This completes the proof. [

Corollary 2.3 For every sequence A of non-zero integers there is a
sequence B such that

s(B) = s(A) 1

BI ~ 1Al (Al-s(4)+DlelA]
Proof Suppose A = (ay,as,...,a,) and s = s(A). Let C be the set of
all values of the first n—s+1 members of A. Clearly the set C has
k < n—s+1 members. By Theorem 2.1, f(k) < k!e. Thus, the asser-
tion of the corollary follows from Lemma 2.2. O
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Corollary 2.4 Let S be the following sequence of 140 elements:
S=@l:1sis2,1sj=<5,1<1=<14). Then s(5) <255 Hence
s($)/|S| = &.

Proof Let A be the sequence A = (1,2). Clearly s = s(4) = 1 and s,
A, k =2 and C = {1, 2} satisfy the hypotheses in Lemma 2.2. Since, by
Theorem 2.1, f(2) =5, Lemma 2.2 implies that, for the sequence
B=(j:1<sis2,1=<j=<5), s(B)<5-1=4. In fact, since, e.g.,
(1,3,8,10) is sum-free, s(B) = 4. Putk = 3 and C = {1,2,4}. One can
easily check that C, k,s=4and A = (jj: 1 <i=< 2,1 = j=25) satisfy
the hypotheses of Lemma 2.2. Since, by Theorem 2.1, f(3) = 14, the
lemma implies that, for the sequence S defined by the corollary,
5(S) =4-14—1 = 55, as needed. O

Remark 2.5 Lemma 2.2 (or Corollary 2.3) clearly enables us to con-
struct from S sequences B with s(B)/|B| < 3. Since it does not seem
that this method suffices to close the gap between the lower bound in
Proposition 1.2 and the upper bound in the last corollary, we omit the
detailed computation of s(B) for the resulting sequences B,

3 Sum-free subsets in finite Abelian groups

In this section we prove Theorem 1.3. We first show that, for any finite
Abelian group G and every sequence A of non-zero elements of G,
s(A) > %|A|. This clearly implies a similar inequality for subsets of G.
The basic method in the proof is similar to that used in the proof of
Proposition 1.2, but requires several additional ideas. We start with the
following simple observations concerning the cyclic group Z,. Define

L={x€EZ,: n <x =< 3%n},
L=x€Z,:in<x<%inorin<xs<3zn}

One can easily check that both I; and I, are sum-free subsets of Z,,.

For any divisor d of n, let dZ, denote the subgroup of all multiples
of d in Z,, i.e., dZ, = {0,d,2d,...,n—d}. Clearly dZ, has n/d ele-
ments. In our proof we need the values of the fractions
|dz,N1;|/|dZ,| for all divisors d of n and j = 1,2. Clearly these can
be computed by a straightforward case analysis, which is summarized in
the following statement, the easy detailed proof of which is omitted.

Lemma 3.1 The table contains the quantities |dZ,N1;|/|dZ,| for all pos-
siblen = 2 and d|n (1 < d < n) depending on the value of |dZ,| = n/d
modulo 6.
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n |dz,n1]| |dZ, N 1|
d |dZ, | |dz, |
2k _1 2% 1
6k e TG A o
6k 3 6 3
6k+1 7  6k+1 7
TR 2k
6k +2 6k +2
2k+1 1 2k 41 1
k+ = ey
LARER 6k+3 3
by BT _SIESSIRSD .
6k+4 4  6k+4 3
2%+2 1 2k+2 _ 1
6k+5 - -
6k+5 3 6k+5 3

In particular, for all admissible values of n and d,
4 |dZ,NI| 3 \dZ.0v: . 2

==, :
7 [#Z,] 7 s T ()

We can now prove the lower bounds in Theorem 1.3. Let G be an
arbitrary finite Abelian group and let B = (b, b,,...,b,,) be a sequence
of m non-zero elements of G. As is well known, G is a direct sum of
cyclic groups and therefore there are n and s such that G is a subgroup
of the direct sum H of s copies of Z,. Thus we can think of the ele-
ments of B as members of H. Each such element b; is, in fact, a vector
b; = (b1, bs2,--.,bi), where, for each i, 0 < b;y,...,b;; < n and not all
the b,-}- are zero. Let us choose a random element (xq,%;,...,x;) of
H = Z according to a uniform distribution and define m elements
fisfas-- s fin Of the cyclic group Z, by

5
f =5 x;jb;; (modn).
j=1
Notice that, for every fixed i (1 =i < m), the mapping

s
(x‘,xz,...,xs) =2 -El x}b,} (mod")
o
over, if d; is the greatest com-

is a homomorphism from H to Z,. More _
d; < n, d;|n and the image of

mon divisor of b;, by, ..., b;; and n then
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this homomorphism is just d;Z,,. Consequently, as x = (x,...,x,) ranges
over all elements of H, f; ranges over all elements of d; Z,, and attains each
value of d; Z,, the same number of times. It follows that, foreachj = 1,2,

|dizn|

For each divisor d of n (1 <d < n), let m; denote the number
of elements b; in B such that gcd(b;y,b;s,...,b;,n) = d. Clearly

o i din.d<n Ma = m and, for j = 1,2, the expected number of elements b;
such that f; € ; is
|dZ,NI;|
M, = 2 ks ol
J
dln ldzn I
d<n
Moreover, since x = (0,0,...,0) € H maps every b; into f; = 0 & I, it
follows that there is an x = (xy,...,x;,) € H and a subsequence A of
strictly more than M, elements of B such that each a = (a;,...,a;) € A

is mapped by x into ELI x;a; (modn) € I,. Clearly this A is a sum-
free subsequence of B (since I; is sum-free) and thus

|dZ,N1,|
s(B) > M, = e e 3
i d}l‘, A (32)
d<n

Similarly, since I, is sum-free,

|dZ,N1,|
S(B) = M2 e ¢ oy = (33)
3~
<n

Combining (3.1), (3.2) and (3.3), we obtain
=5 d(g [dz,n4] 3 ldz,,mzl)

7 |4zl 7 |dZ,]

Therefore B contains a sum-free subsequence of more than 3%|B|
members, completing the proof of the lower bounds (for sequences and
sets) in Theorem 1.3.

The fact that % is optimal (for both sets and sequences) follows from
the following result of Rhemtulla and Street [12].
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Theorem 3.2 (Rhemtulla and Street [12]) Let p = 3k+1 be a prime and
let G be the elementary Abelian group Z,. Then |G| = p* and the max-
imum cardinality of a sum-free subset of G is kp*~".

In view of this theorem, if we choose G = Z7 and B = G\{0}, then
|B| = 7°—1 and s(B) = 2-7°"1. Since 5 can be arbitrarily large, this
shows that the constant  in Theorem 1.3 is optimal (for sets, and hence
for sequences too). O

4 Extensions, concluding remarks and open problems

1. One can easily generalize Proposition 1.2 (and 1.1) to the case of
real numbers. This was done by Erdds in [7], where he proves the
next statement for sets B.

Proposition 4.1 For any sequence B of non-zero reals, s(B) =
1
5|B|.

The proof is similar to that of Proposition 1.2. If B =
(by,bs,...,b,) is a sequence of non-zero reals and e =
min;<;<, |b;|, we choose, randomly, a real number x according to
a uniform distribution on [1/e,10n/e] and compute the numbers
d; = b;x (mod1). One can easily show that the expected number
of d;—s that belong to [4, %) is more than %(n—1) and hence there
is an x and a subsequence A of at least 4n members of B such that
xa (mod1) € [3,3) for each a € A. This subsequence is sum-free,
since [4,2) is sum-free with respect to addition modulo 1.

In fact here also we can improve on Erdds’s result and prove
that strict inequality holds.

Proposition 4.1’ For any sequence B of non-zero reals, s(B) >
1
3|B|.

To prove this fact, we apply Proposition 1.2. Given any arbitrary
sequence B = (by,...,b,) of reals, we claim that there is a
sequence C = (¢y,...,c,) of integers such that, for any
€,..-,€, € {£1,0}, the sign of X"  €b; (whichis 0, +1 or —1) is
equal to that of 37__ €;c;. To prove this we argue as follows. For
each of the 3" possible vectors € = (€;,...,€,), let E(e) be an
equation or an inequality with the »n variables x,,...,x, defined as
follows: if X7 | €;b; = 0 then E(e) is the equation 37  €x; = 0.
If 37, €b; > 0, let g be a positive rational so that 3"  €b; =g
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and let E(e) be the inequality E?sl €x; = q. Similarly, if
27, €b; <0, then E(e) is the inequality X" | €x; < g, where g
is an arbitrary negative rational satisfying X" | €;b; < q. Consider
the linear program in the n variables xy,...,x, consisting of the 3"
constraints E(e). This program has a feasible real solution
(by,...,b,). Since all the constraints have rational coefficients it
also has a rational solution (dy,...,d,). By multiplying all these
numbers d; by a suitable integer we obtain a sequence of integers
(¢y,..-,c,) such that, for any €,,...,¢, € {£1,0},

n n
sign(E e,—b,-) = sign( e,—c,-).
i=1 i=1

Returning to Proposition 4.1', let B = (b;,...,b,) be a sequence
of non-zero reals. By the above discussion there is a sequence
C = (¢q,...,c,) of integers satisfying

n n
sign(E efb,-) = sign( e,-c,-)
i=1 =1

for all ¢; € {+1,0}. In particular, no c; is zero and s(B) = s(C).
By Proposition 1.2 s(C) > 3n and hence s(B) > 3n, completing
the proof of Proposition 4.1'. O

. Motivated by Schur’s theorem (stated in Section 2) and by the

problem of estimating Ramsey numbers (see, e.g. [14] or [10]),
various authors considered the problem of partitioning all the non-
zero elements of a group into the minimum possible number of
sum-free subsets. As noted by Abbott and Hanson [1], the origi-
nal argument of Schur easily implies that the non-zero elements of
no finite Abelian group of order n can be partitioned into less than .
c;logn/loglogn sum-free subsets, where ¢; is an absolute con-
stant. On the other hand, as is also observed in [1], the non-zero
elements of any finite Abelian group of order n can be partitioned -
into O(logr) sum-free subsets. By repeatedly applying Theorem
1.3 (and Proposition 4.1), we clearly obtain the following more
general result.

Proposition 4.2 Any set of n non-zero elements in an arbitrary finite
Abelian group can be partitioned into O(logn) sum-free subsets.
Similar statements hold for any set of non-zero reals.
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3. A close inspection of the proof of Theorem 1.3 shows that the con-
stant %, although the best possible for the general case, can be
improved for many groups G. Thus for example the proof of Pro-
position 1.2 shows that, for any sequence B of non-zero elements
of a cyclic group of prime order p = 3k+2,

k+1
s(B) > 7 |B|

(and this is best possible for each such p, as can be easily shown
using the well-known Cauchy—-Davenport theorem [5], [6]). Simi-
larly, for any sequence B of non-zero elements of Z,, where p = 1
(mod3) is a prime, s(B) = 1|B| and this is best possible for each
such p. The proof of Theorem 1.3 easily gives that, for any
sequence B of non-zero elements of Z;
23—1

s(B) = 25_1|
This again is best possible for each s. By modifying the proof of
Theorem 1.3, we can also improve the constants for various cyclic
groups. in particular, we can show that if n is not divisible by any
prime congruent to 2 modulo 3 then, for any sequence B of non-
zero elements in Z,, s(B) = %|B|. The proof is similar to that of
Proposition 1.2; we multiply all the elements of B by a random
member of Z} (i.e., by a random number which is relatively prime
to n) and compute the expected value of the numbers that are
mapped to a certain sum-free subset of Z,. The situation is more
complicated when n is divisible by primes congruent to 2 modulo
3. A fruitful approach here is to multiply, for each divisor d of n,
the elements of B by a random element of dZ} and obtain a lower
bound for s(B) by computing the expected number of elements of
B mapped to a certain sum-free subset of Z,, (e.g., the subset
{x € Z,: 3n < x < 3n}. This lower bound can be expressed as a
linear combination of the quantities m,; = {b; € B : ged(b;,n) = d}.
All these lower bounds and the constraints m,; = 0 and Y, m; = |B|
define a linear program from which a lower bound to s(B) can
be extracted. Using this method we can prove, for example, the
following.

B|.

Proposition 4.3 For any prime p = 2 (mod3) and any s = 1, every
sequence B of non-zero elements of the cyclic group Z,: satisfies
s(B) > §|Bl|.
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We omit the somewhat tedious (though not too complicated)
details of the proof. O

. The proof of Proposition 1.2 (or 4.1) can be easily modified to

show that, for any r = 2, any sequence B of n non-zero reals con-
tains a subsequence A of size (2(n/r) such that there are no
a,,a,...,4,,a,.1 € A such that 2:=1 a; = a,,q. A similar state-
ment for general Abelian groups is false. In fact, in ZJ' the set of
all non-zero elements B has cardinality N = 2”"—1. Trivially, any
subset A of B of cardinality |A| =x with (3) >2"—1 has
a,,a;,ay,a4 € A such that, in ZJ, a;+a, = a;+a, and hence
a;+a,+a; = a4. Some related results have recently been obtained
by Zs. Tuza.

. Let us call a subset A of an Abelian group G weakly sum-free if

there are no three distinct elements a;,a,,a; € A such that
a,+a, = a;. For aset B C G, let ws(B) denote the maximum car-
dinality of a weakly sum-free subset of B. Since each sum-free set
is weakly sum-free, Theorem 1.3 implies that, for every Abelian
group G and for every set B of non-zero elements of G,
ws(B) > %|B|. Using some of the methods of [2] we can show
that the constant % is optimal here too. Indeed, take G = Z7 and
B = G\(0). Then |B| =7—1. Let A C B be a weakly sum-free
subset of B. To prove the optimality of the constant 3 we show
that, for every fixed e >0, |A| <2-7* !+¢-7°, provided s is
sufficiently large. Call an element a of A good if there are two
distinct elements b,c € A such that 2a = b+c¢. Otherwise it is
bad. We claim that the number of bad elements is smaller than
€7, for s > sg(e). This is because otherwise, by the main result of
[3] (see also [8] for a short proof and [9] for a much stronger
result), there are three distinct bad elements a, b and ¢ such that
2a = b+c, contradicting the fact that a is bad. Therefore, if
|A| =2-7"1+€-7° and s > sy(€), then A contains more than
2:7°"! good elements. It follows from the result of [12] (stated in
Theorem 3.2 in Section 3) that there are three not necessarily dis-
tinct good elements d, e and f of A such that d+e = f. Clearly
d# fand e # f (since 0 € A). If d # e then A is not weakly
sum-free, contradicting its definition and completing the proof.
Otherwise 2d = f and, since d is good, there are two distinct ele-
ments @ and b of A such that a+b = 2d = f. Hence, in this case
too, A is not weakly sum-free, completing the proof. O
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6. An analogue of Proposition 1.2 can be established for measurable
sets in the torus. Recall that the (one-dimensional) torus T is the
group of real numbers x (0 < x < 1) with addition modulo 1. Let
1 be the usual Lebesque measure on T with u(7) = 1. We can
prove the following.

Proposition 4.4 For any measurable B C T and for any € > (), there
is a (measurable) sum-free set A C B such that w(A) > (3 —€)u(B).
The constant % is best possible.

To prove this proposition, we use the fact that f: T— T defined
by f(x) = 2x (mod 1) is ergodic. Fori = 1, put

B;={x€B:4=<f9%) = 2% (mod1) < 3}.

Clearly B; is sum-free. Since f is ergodic,

e L j

lim ;gl w(B;) = 3u(B),
implying that u(B) > (5 —€)u(B) for some i. The fact that the
constant 4 is best possible is proved by showing that, for each
sum-free A C T, u(A) < 3. Indeed, suppose A C T is measurable
with u(A) = 1 +e, where € > 0. Let p be a large prime, and call
an element i € Z, A-full if

For sufficiently large p, the cardinality of the set B C Z, of all A-
full elements of Z, is clearly bigger than 3p+1. Consequently, by
the Cauchy-Davenport theorem ([5], [6]), |[B+B| = 2|B|—-1>
%p. Hence (B+B)NB # & and there are b,,b,,b; € B such that
by +b, = b3 (modp). One can easily check that this implies that A
is not sum-free, as needed. O

By replacing the Cauchy-Devonport theorem by Kneser’s
theorem [11], we can show that the maximum-possible measure of
a sum-free measurable subset of the n-dimensional torus is also %

foralln = 1.

7. Our proofs of Proposition 1.2 and 1.3 are probabilistic. In particu-
lar, they clearly supply an efficient randomized algorithm which,
given a set of n non-zero integers B, finds, in expected polynomial
time (in the length of the input), a sum-free subset of it of cardi-
nality (2(n). It would be interesting to find an efficient
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deterministic algorithm for this problem. It would also be interest-
ing to determine the best-possible constants in Propositions 1.1 and
12
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